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Mo#va#on

• Sparse matrices arising from higher-order discretizations 
and problems with multiple degrees of freedom often 
exhibit a dense block substructure in which dense blocks 
are constant size and aligned 

• BCSR is a common storage format used to store these 
matrices 

• Other formats may be more efficient, but there are 
development and runtime costs associated with translating 
between formats 

• We seek to optimize BCSR mat-vec on various shared-
memory architectures



Storage	  format:	  Block	  CSR
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Single-‐level	  parallel	  algorithm
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Single-‐level	  parallel	  algorithm
#pragma omp parallel for 
for(int target_block_row = 0; target_block_row < jb; target_block_row++) { 
 int first_block = row_ptr(target_block_row); 
 int last_block = row_ptr(target_block_row+1); 

 double local_out[bs] = {0}; 

 for(int block = first_block; block < last_block; block++) { 
  int target_block_col = col_ind(block); 
  for(int col=0; col<bs; col++) { 
   double vec_this_col = x[target_block_col][col]; 
   for(int row=0; row<bs; row++) { 
    local_out[row] += val[block][col][row] * vec_this_col; 
   } 
  } 
 } 

 // Write output for this block row back to global output 
 for(int row=0; row<bs; row++) { 
  y[target_block_row][row] = local_out[row]; 
 } 
}



GPUs

• CUDA has a large number of threads operating in SIMT 
(single instruction, multiple thread) 

• A group of 32 threads (known as a warp) execute the 
same instruction in parallel 

• Threads in a warp must cooperate 

• Threads should also access contiguous segments of 
memory for “coalesced” accesses 

• More levels of parallelism are needed — need to use finer-
grain parallelization



GPUs:	  By-‐block	  algorithm
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GPUs:	  By-‐block	  algorithm

• Accesses to val will be fully coalesced. Accesses to x will be fully 
coalesced for bs=2 and partially coalesced for larger block sizes 

• Accesses to row_ptr and col_idx and writes to global_out are 
generally not coalesced, but this has a smaller impact, especially for large 
block sizes 

• There is no interaction between threads until the final reduction. We exploit 
coherency of memory access within a warp to avoid synchronization 

• If the block size is not a power of two, some threads in each warp will be 
idle. However, the high degree of parallelism keeps the memory bus 
saturated despite decrease in active number of threads 

• Block size is limited to bs=5



GPUs:	  By-‐column	  algorithm
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GPUs:	  By-‐column	  algorithm

• Like the previous algorithm, this algorithm has minimal 
interaction between threads and achieves coalesced or 
partially coalesced access to val and x 

• However, each thread must calculate its target block index 
and target column (within a block) on every iteration. Memory 
accesses stall on these integer operations 

• Despite the improved occupancy, the previous algorithm 
tends to outperform it for block sizes up to 5x5 

• This algorithm can handle block sizes up to 32x32



GPUs:	  Row-‐per-‐thread	  algorithm
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GPUs:	  Row-‐per-‐thread	  algorithm

• In this implementation, accesses to x are not 
coalesced. We can address this by loading x into 
shared memory



GPUs:	  Row-‐per-‐thread	  algorithm
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GPUs:	  Row-‐per-‐thread	  algorithm
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GPUs:	  Row-‐per-‐thread	  algorithm

• Achieves fully-coalesced accesses to val and x when 
the block size is a multiple of 16, and partially-coalesced 
accesses when this is not the case 

• Threads use few registers, depend on little arithmetic for 
memory requests, and do not interact with other threads; 
therefore, occupancy is high and latency is low 

• Performs best for block sizes ≥16 

• Performance does not degrade as much as we might 
expect for bs=17



Experimental	  Results

• Compared algorithms to comparable algorithms in Intel MKL, 
NVIDIA cuSPARSE, and KSPARSE (Abdelfattah et al.) 

• Ran each algorithm 3000 times to determine average 
execution time 

• Divided execution time by the amount of unique data read (i.e. 
the total size of x, val, col_idx, and row_ptr) to determine 
achieved throughput. This throughput does not include time 
taken for population of matrix or zero-filling of output vector 

• All computations were performed using double-precision 
values



Experimental	  Results

Plot Name bs Dimensions 
(in blocks)

nnzb 
(nnzb/row) Description

GT01R 5 1.60K 20.37K (13) 2D inviscid fluid

raefsky4 3 6.59K 111.4K (17) Container buckling problem

bmw7st_1 6 23.6K 229.1K (10) Car body analysis

pwtk 6 36.9K 289.3K (8) Pressurized wind tunnel

RM07R 7 545K 1.504M (28) 3D viscous turbulence

audikw_1 3 314K 4.471M (14) AUDI crankshaft model

Matrices from University of Florida Sparse Matrix Collection



Experimental	  Results:	  SNB/KNC

Compton testbed at 
Sandia National Labs

• Used two 8-core Sandy Bridge Xeon E5-2670 
processors at 2.6GHz and a KNC Xeon Phi 
3120A card 

• Intel ICC 15.02 and MKL 11.2.2.164 

• Compared against MKL’s mkl_dcsrmv and 
mkl_dbsrmv (mkl_dbsrmv is not multi-
threaded) 

• Also tested a version of our algorithm that 
pads columns within blocks to multiples of 8 — 
each column then falls on a 64-byte boundary

Xeon E5-2670 Xeon Phi 3120A

Clock speed 2.60 GHz 1.10 GHz

Cores 8 57

Threads 16 228

L2 cache 256KB/core 28.5 MB

L3 cache 20 MB

Max mem bandwidth 51.2 GB/s 240 GB/s

We wish to acknowledge our appreciation for the use of the Advanced Architecture Test Bed(s), xxxx, at Sandia National Laboratories. The test beds 
are provided by NNSA’s Advanced Simulation and Computing (ASC) program for R&D of advanced architectures for exascale computing.



Experimental	  Results:	  SNB/KNC
Performance comparison 
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Experimental	  Results:	  SNB/KNC
Variable block sizes on Sandy 

Bridge
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Experimental	  Results:	  SNB/KNC
Scaling on Sandy Bridge
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Experimental	  Results:	  Kepler

• Used an NVIDIA K80S dual-GPU card 
with only one GPU used to run the 
tests 

• ECC was on and Boost Clock was off 
• GCC 4.9.0 and CUDA 7.0.18 
• Compared against cuSPARSE’s 

cusparseDbsrmv and KSPARSE’s 
ksparse_dbsrmv

Core clock speed 562 MHz

Memory clock speed 2505 MHz

Max memory bandwidth (with 
ECC off) 240 GB/s

STREAM benchmarked 
bandwidth 145 GB/s

Shannon testbed at 
Sandia National Labs

We wish to acknowledge our appreciation for the use of the Advanced Architecture Test Bed(s), xxxx, at Sandia National Laboratories. The test beds 
are provided by NNSA’s Advanced Simulation and Computing (ASC) program for R&D of advanced architectures for exascale computing.



Experimental	  Results:	  Kepler
Performance comparison on Kepler
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Experimental	  Results:	  Kepler

Variable block sizes on Kepler
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Conclusions	  and	  Future	  Work

• By optimizing memory access patterns and minimizing visible 
latencies, we can achieve high bandwidth utilization and 
outperform vendor-optimized implementations 

• Performance of KNC may be optimized by developing a 
cooperative threading strategy to improve temporal cache locality 
of x for hardware threads 

• Data structure transformations may be required to improve 
performance by a significant margin. Blocks might be grouped to 
and processed as tiles to reduce the sizes of row_ptr and 
col_idx and to improve cache performance for x 

• May be possible to avoid altering the BCSR format by using 
metadata pointing to tiles in the matrix





GPUs:	  By-‐block	  algorithm

const int i = thread_block_idx * thread_block_size + thread_idx; 
const int warp_id = i/WARP_SIZE; 
const int lane = i%WARP_SIZE; 
const int target_block_row = warp_id; 
const int first_block = row_ptr[target_block_row]; 
const int last_block = row_ptr[target_block_row+1]; 
const int col = (lane / bs) % bs; 
const int row = lane % bs; 

// Allocate shared memory for reduction step 
double *shared_out = <allocate thread_block_size*sizeof(double) bytes smem>; 
shared_out[thread_idx] = 0;



GPUs:	  By-‐block	  algorithm

// Only process whole blocks (disable threads that can only cover partial blocks): 
if(lane < (WARP_SIZE/(bs*bs))*(bs*bs)) { 
 double local_out = 0; 
 for(int block = first_block + lane/(bs*bs); block < last_block; 
   block += WARP_SIZE/(bs*bs)) { 
  local_out += val[block][col][row] * x[col_ind(block)][col]; 
 } 
  
 // Reduce across the warp to produce the final row results 
 shared_out[thread_idx] = local_out; 
 int stride = round_up_to_power_of_two((32 / bs) / 2); 
 for(; stride>=1; stride /= 2) { 
  if(lane < stride*bs && lane + stride*bs < WARP_SIZE) 
   shared_out[thread_idx] += shared_out[thread_idx + stride*bs]; 
 } 

 // Write the final reduced block for this row to global mem 
 if(lane < bs) { 
  y[target_block_row][lane] = shared_out[thread_idx]; 
 } 

}



GPUs:	  By-‐column	  algorithm

const int i = thread_block_idx * thread_block_size + thread_idx; 
const int warp_id = i/WARP_SIZE; 
const int lane = i%WARP_SIZE; 
const int target_block_row = warp_id; 
const int first_block = row_ptr[target_block_row]; 
const int last_block = row_ptr[target_block_row+1]; 
const int row = lane % bs; 

// Allocate shared memory for reduction step 
double *shared_out = <allocate thread_block_size*sizeof(double) bytes smem>; 
shared_out[thread_idx] = 0;



GPUs:	  By-‐column	  algorithm
// Only process whole columns (disable threads that can only cover partial columns): 
if(lane < (WARP_SIZE/bs)*bs) { 
 double local_out = 0; 
 for(int target_nnz_col = first_block*bs + lane/bs; target_nnz_col < last_block*bs; 
   target_nnz_col += WARP_SIZE/bs) { 
  int block = target_nnz_col / bs; 
  int col = target_nnz_col - block*bs; 
  local_out += val[target_nnz_col*bs + row] * x[A.col_ind(block)][col]; 
 } 

 // Reduce across the warp to produce the final row results 
 shared_out[thread_idx] = local_out; 
 int stride = round_up_to_power_of_two((32 / bs) / 2); 
 for(; stride>=1; stride /= 2) { 
  if(lane < stride*bs && lane + stride*bs < WARP_SIZE) 
   shared_out[thread_idx] += shared_out[thread_idx + stride*bs]; 
 } 

 // Write the final reduced block for this row to global mem 
 if(lane < bs) { 
  y[target_block_row][lane] = shared_out[thread_idx]; 
 } 

}



GPUs:	  Row-‐per-‐thread	  algorithm

const int i = thread_block_idx * thread_block_size + thread_idx; 
const int warp_id = i/WARP_SIZE; 
const int lane = i%WARP_SIZE; 
const int target_block_row = warp_id; 
const int first_block = A.row_ptr(target_block_row); 
const int last_block = A.row_ptr(target_block_row+1); 

// Allocate shared memory for storing segments of x 
double *shared_vec = <allocate thread_block_size*sizeof(double) bytes smem>; 

if(lane < bs) { 
 double local_out = 0; 
 for(int block = first_block; block < last_block; block++) { 
  shared_vec[thread_idx] = x(A.col_ind(block), lane); 
  for(int col = 0; col<bs; col++) { 
   local_out += shared_vec[col] * A.val[block][col][lane]; 
  } 
 } 

 y[target_block_row][lane] = local_out; 
}


